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This paper presents an experimental study of the behaviour of single particles and 
suspensions in polymer solutions in a torsional flow. Four issues are investigated in 
detail: the radial migration of a spherical particle; the rotation and migration of a 
cylindrical particle ; the particle-particle interaction and microstructures in a 
suspension of spheres; and the microstructures in a suspension of rods. Newtonian 
fluids are also tested under similar flow conditions for comparison. A spherical particle 
migrates outward at constant velocity unless the polynier solution is very dilute. A rod 
in a viscoelastic fluid has two modes of motion depending on its initial orientation, 
aspect ratio, the local shear rate and the magnitude of normal stresses in the fluid. In 
the first mode, the rod rotates along a Jeffery-like orbit around the local vorticity axis. 
It also migrates slowly inward. The second mode of motion has the rod aligned with 
the local stream at all times; the radial migration is outward. A hypothesis proposed 
by Highgate & Whorlow (1968) on the radial force on a particle in a cone-and-plate 
geometry is generalized to explain the variation of migration speed in torsional flows. 
Spheres form chains and aggregates when the suspension is sheared. The chains are 
along the flow direction and may connect to form circular rings; these rings migrate 
outward at a velocity much higher than that of a single sphere. Rods interact with one 
another and aggregate in much the same way, but to a lesser extent than spheres. It is 
argued that the particle interaction and aggregation are not direct results of the shear 
flow field. Two fundamental mechanisms discovered in sedimentation are applied to 
explain the formation of chains and aggregates. Finally, the competition between 
inertia and elasticity is discussed. A change of type is not observed in steady shear, but 
may happen in small-amplitude oscillatory shear. 

1. Introduction 
Solid spheres and fibres are added to polymer melts to lower cost or to achieve 

desirable properties. In processing such composite materials, it has been observed that 
the solids tend to migrate across streamlines and form aggregates, and fibres exhibit 
complex orientation depending on the flow field. Thus, inhomogeneity and anisotropy 
occur in the finished product. For instance, solid concentration gradients develop in 
injection moulding of plastics filled with glass beads and short fibres (Kubat & 
Szalanczi 1974; Schmidt 1977; Hegler & Mennig 1985). This has been attributed to a 
host of causes including inertia, viscoelastic normal stresses and special velocity profiles 
near the gate or stagnation points. Bright, Crowson & Folkes (1978) and Toll & 
Andersson (1 993) described complicated patterns of fibre orientation in various parts 
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of the moulded article. In extrusion of fibre-filled melts, Wu (1979) observed distinctive 
regimes at different flow rates. The surface of the extrudate becomes roughened with 
protruding fibres as the flow rate increases, and the fibre distribution in the extrudate 
and the shape of the cross-section vary accordingly. More recently, Becraft & Metzner 
(1992) observed similar regimes and examined many factors as possible mechanisms 
responsible for the transition between regimes. All the above results are qualitative in 
nature and the explanations are usually speculative. The main reason is that those 
studies strive to approximate the geometry and flow fields in polymer processing. The 
experimental conditions are often not well controlled and characterized and the results 
not quantitatively comparable. Besides, direct tracking of individual particles under 
these experimental conditions is impossible, thus rendering arguments on particle 
behaviour tentative. 

Modelling of the flow of solid-filled polymers has attracted many ingenious 
researchers from the fields of polymer rheology and processing and fluid dynamics. 
Unfortunately, all models up to now fall far short of accounting for the solid behaviour 
mentioned above. Solid fibres are assumed to follow the Jeffery orbit (Jeffery 1922), 
which applies rigorously only to creeping flows of Newtonian fluids. Fibre-fibre 
interaction is modelled as a Brownian-like diffusion (Advani & Tucker 1987). Ait-Kadi 
& Grmela (1994) is the only work that allows for viscoelastic media: the extra stress 
of the fluid is given by a FENE-P model and the solid contribution to the stress is given 
by the Dinh-Armstrong equation (Dinh & Armstrong 1984) modified to include non- 
Newtonian effects on the drag. This is the most sophisticated model that we have seen. 
Yet by no means can fibre aggregation and migration be simulated because the 
nonlinear mechanisms for these scenarios are not understood. 

Therefore, a wide gap exists between the complexity of flows under realistic 
processing conditions and the capability of continuum modelling. This points to the 
need for studying the mechanisms of particle migration and interaction by well- 
designed experiments. This task was first undertaken some 40 years ago by Mason and 
co-workers (Trevelyan & Mason 1951). In simple shear flows in a Couette device and 
Poiseuille flows in capillary tubes, the migration and rotation of single solid spheres, 
rods and liquid drops have been carefully studied. Viscoelastic normal stresses and 
inertia are identified as the nonlinear mechanisms for the intriguing behaviour of 
particles. For example, in a Poiseuille flow of a Newtonian fluid, a neutrally buoyant 
solid sphere migrates to a radial position roughly halfway between the centre and the 
wall (SegrbSilberberg effect). If the fluid is viscoelastic, however, the sphere will 
migrate to the centre of the tube (Karnis & Mason 1966; Gauthier, Goldsmith & 
Mason 1971 b). A solid rod in a shear flow does not follow the Jeffery orbit indefinitely. 
Instead, the orbit evolves into one with maximum viscous dissipation in a Newtonian 
fluid and one with minimum viscous dissipation in a viscoelastic fluid (Karnis, 
Goldsmith & Mason 1966; Gauthier, Goldsmith & Mason 1971 a, b). If the fluid has 
strong normal stresses and the shear rate is sufficiently high, the rod may align itself 
with the streamline (Bartram, Goldsmith & Mason 1975). Leal (1979,1980) and Brunn 
(1 980) have independently developed perturbation methods for weakly nonlinear 
flows. Their theories have successfully demonstrated that the leading-order effects of 
the slightest amount of inertia or normal stress indeed give rise to the respective 
behaviour observed. 

More recently, Prieve and co-workers have carried out a series of experiments in a 
torsional flow between two parallel plates. A solid sphere migrates inward in a 1 YO 
polyisobutylene in polybuten solution; the radial velocity agrees with the perturbation 
theories (Karis, Prieve & Rosen 1984~). Later experiments using more dilute solutions 
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discovered a peculiar phenomenon (Karis, Prieve & Rosen 19846; Prieve, Jhon & 
Koenig 1985; Choi, Prieve & Jhon 1987). The sphere may migrate in either direction 
depending on its initial position. A critical streamline is determined : spheres initially 
released inside the critical streamline migrate inward while spheres initially released 
outside migrate outward. More curiously, the velocity of radial migration does not 
vanish as the initial position of a sphere approaches the critical streamline. Instead, 
there is an apparent discontinuity in the radial velocity as the particle's initial position 
crosses the critical streamline. The anomalous motion of the sphere is believed to be 
caused by viscoelasticity. Obviously, the perturbation theories fail in this situation, so 
it is hard to understand how they have worked for the more concentrated solution used 
in the first paper (Karis et al. 1984~).  

Interaction among spheres in sheared suspensions in viscoelastic liquids has been 
studied by a few authors. Highgate & Whorlow (1968) used a cone-and-plate 
rheometer to shear suspensions of spheres in polyisobutylene solutions. The spheres 
form rings of local high solid concentration and these rings migrate outward, leading 
to complete clearance of solid particles from the flow field. Michele, Patzold & Donis 
(1977) made suspensions of tiny glass beads in polyisobutylene and polyacrylamide 
solutions. A drop of the suspension was placed between two glass plates. The two 
plates were pressed together and one glass moved back and forth above the other. Such 
oscillatory shear causes the glass beads to form chains that are aligned in the flow 
direction. Giesekus (1981) further noticed in a bimodal suspension that these chains are 
selective in terms of particle size: the two species of spheres each form chains of their 
own. More recently, Petit & Noetinger (1988) observed similar structure in a 
suspension undergoing oscillatory shear driven by loudspeakers. We have found no 
experimental results on fibre-fibre interaction and aggregation in viscoelastic fluids. 

The experiments to be reported here are inspired by the work of Prieve et al. (1985). 
We generate a torsional flow by rotating one circular disc above another that is 
stationary. Polymer solutions and Newtonian fluids are used as suspending media. 
Four topics are studied : 

(a )  The migration of a single sphere in the torsional flow. Because the intriguing 
results of Prieve et al. (1985) cannot be explained by any theory, confirmation using 
different fluids and parameters is warranted. Our results turn out to be somewhat 
different from theirs. In particular, the critical streamline is not found. This may well 
be due to limitations in our device and test materials. 

(b)  The migration and rotation of a single solid rod. As mentioned before, the 
rotation and orbit evolution of rods in Couette and Poiseuille flows have been studied. 
We have found that the orbit evolution in a torsional flow is essentially the same as in 
a simple shear flow. The rod, however, migrates inward or outward depending on its 
mode of motion. 

(c) Sphere-sphere interaction and aggregation. Though Giesekus (198 1) mentioned 
studies done at Dortmund using torsional flows, we have not seen such results in the 
literature. Our work appears to be the first well-controlled experiment using continuous 
shear. We note that even the simplest scenario of particle-particle interaction cannot 
be explained in the framework of perturbation theory (Brunn 1980). Thus, the 
experiments will provide us with new insights into the fully nonlinear nature of the 
interactions. 

(d )  Interaction and aggregation of rod-like particles. We have found that rods 
aggregate under shear in a similar way, but to a much lesser extent than spheres. 

Admittedly, the results reported may not apply directly to explain phenomena 
encountered in polymer processing. We will try, however, to extract the basic fluid 
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FIGURE 1. A sketch of the experimental setup. 

dynamics governing particle motion and interaction in viscoelastic fluids. A better 
understanding of these mechanisms will undoubtedly benefit the effort to model the 
flow and processing of such materials, and eventually help to improve industrial 
processes. 

An outline of the paper is as follows. Section 2 describes the equipment and 
procedure used in the experiments. Experimental results are presented in $3.  In $4 we 
explore the mechanisms underlying the observed behaviour. A summary of results is 
given in $ 5.  

2. Apparatus and procedure 
Figure 1 is a sketch of the experimental setup. A is a glass disk of diameter 22 cm 

and thickness 0.5 cm. It is glued to an aluminium shaft that is clamped onto a drill 
press; thus A can be moved up and down by a control handle. The rotation of A is 
driven by a step motor E mounted on top of the modified drill press and the speed of 
rotation D can be changed easily using a motor-control unit. B is another glass disk of 
the same thickness but a larger diameter. Concentric circles are printed on a 
transparency sheet and glued on the bottom of B. A short aluminium cylinder C is 
glued onto B; the gap between the edge of A and the inner surface of C is 0.5 cm. D 
is a video or photo camera. The gap H between A and B can be measured with an 
accuracy of 0.01 mm. 



The motion of particles in viscoelastic liquids under torsional shear 203 

Shear rate (s-1) 

G', G I  

(Pa> 

100 

10 

1 

0 1  

0 01 
0 1  1 10 100 

Frequency (rad s-I) 

FIGURE 2. The rheological properties of polyox solutions. (a) Shear viscosity and (b) dynamic 
moduli. Open symbols represent G' and filled ones G". 

Before each experiment, the bottom plate B is levelled to within 0.07 mm at the rim, 
and A is aligned with B to within 0.07 mm at the rim. Then A is raised and the sample 
fluid is loaded onto B. A is then lowered to the desired gap size. Air bubbles trapped 
in the liquid are sucked out using a syringe needle through a re-sealable hole on the 
shroud C. Single spheres and rods are injected through the same hole to a specific radial 
and vertical position. After the shear is started, trajectories of single particles are 
recorded onto video tapes and later read by use of a VIA100 reticle unit. The maximum 
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error in the radial position of the particle is 0.2 mm. The parallax error is estimated to 
be negligible. When suspensions of many particles are sheared, we use a photographic 
camera coupled with close-up lenses to capture the details of the particle interactions. 

The viscoelastic liquids used are aqueous solutions of poly(ethy1ene oxide) (Polyox 
WSR301 from Union Carbide) of different concentrations. These solutions exhibit 
large normal stress differences and have a strong storage modulus (Joseph et al. 1994). 
Figure 2 shows the rheological behaviour of 2%,  1 % and 0.5% solutions. We have 
used glycerin and Newtonian silicone fluids (Dow 200 fluids) in certain tests as a 
comparison with the polymer solutions. Polystyrene spheres with diameters ranging 
from 250 to 850 pm are used. The density of the material is 1.05 g ~ m - ~ .  Rod-like 
particles are cut from two kinds of plastic threads with density 1 and 1.26 g ~ m - ~ ,  
respectively. The first density roughly matches that of polyox solutions and silicone oils 
while the second matches that of glycerin. The diameter of the rods ranges from 120 
to 330 pm and the length from 0.5 to 4 mm. 

3. Experimental results 
All experiments are done in a temperature-controlled room, and no further remedies 

are taken to counter viscous heating. We repeatedly measured the temperature of the 
liquid before and after one hour of shearing at a typical shear rate. The temperature 
rise is never over 1 "C. Mechanical degradation is minor in our tests because the shear 
rate is low (- 20 s-l) and the sample is used no longer than a week. 

3,l .  Secondary 80 w 
It is well known that secondary recirculations occur in the parallel-plate type of 
apparatus (Savins & Metzner 1970; McCoy & Denn 1971), and that inertia and 
viscoelastic normal stresses cause opposite vortical flows (Hill 1972). In our apparatus, 
the intensity of secondary flow is expected to depend on the gap size H a n d  the angular 
velocity of the upper plate Q. In a preliminary test we inject a polystyrene sphere of 
diameter d = 610 pm and a glass sphere with d = 850 pm at different radial and vertical 
positions. The fluid is 2 % polyox solution, and the plates are separated by H = 4 mm. 
Then the upper plate starts to rotate at Q = 6.8 r.p.m. If we assume that the particle 
follows the local fluid, the angular velocity w with which the particle revolves indicates 
its elevation z.  The polystyrene sphere is almost neutrally buoyant and it moves away 
from each plate toward the midplane z = H/2, while at the same time migrating 
outward. The glass sphere is considerably heavier than the fluid and it adopts a vertical 
position close to the bottom plate. Interestingly, it migrates inward. This points to a 
secondary flow that goes inward near the stationary plate, which is apparently caused 
by inertia. 

This secondary flow can be suppressed by reducing H o r  52. So we repeated the above 
procedure using H = 2 mm and Q = 3.8 r.p.m. Both glass and polystyrene spheres 
rapidly approach the midplane, and their radial migrations are both outward. Since the 
narrow gap does not permit the glass sphere to stay low, this cannot prove the absence 
of secondary flow. For this purpose, a small blob of blue ink is injected at r = 6 cm near 
the upper plate while a blob of red ink is injected at r = 8 cm near the lower plate. Then 
the fluid is sheared at 52 = 4 r.p.m. for one hour. Though two colour bands emerge as 
a result of diffusion, no radial displacement is discernible for either band. Thus, we are 
quite confident that secondary flow is not a factor in tests using the 2 YO solution with 
H z 2 mm and 52 6 4 r.p.m. 

To estimate the magnitude of secondary flows, Karis et al. (1984~) used an 
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asymptotic formula derived for low-Reynolds-number flows of Newtonian fluids. The 
radial velocity thus calculated was claimed to be much smaller than the observed 
migration speed in the viscoelastic solution. We double-checked this by putting their 
experimental parameters into the formula, and we obtained a radial velocity that is of 
the same order of magnitude as the migration velocity that they measured. Our 
speculation is that the inertia-induced recirculation was cancelled by that due to 
normal stress. This results in a negligible secondary flow, consistent with the 
observation that the radial migration does not depend on the elevation z of the particle. 

3.2. Radial migration of a sphere 
A sphere released in a 2 YO polyox solution migrates outward, and the radial velocity 
does not vary significantly with the radial position. Figure 3 shows a group of 
trajectories. Most of each trajectory falls on a straight line, and its slope does not 
depend on r in a systematic way. The initial portion of most trajectories, however, does 
not fall on the same straight line. By studying the vertical elevation of the particle we 
realized that this is caused by the proximity of the plates. If the particle is initially 
released close to one of the plates, it goes toward the midplane (figure 4). At the same 
time, its radial motion takes the form of outward migration followed by a plateau or 
even a slight inward migration. By then the particle is near the midplane and will 
migrate outward at a constant speed. The exact mechanism for this initial episode is not 
clear. It is not related to any secondary motion because the pattern is the same for 
particles released near the upper or lower plate. for particles released near the 
midplane, this does not happen; the particle starts to migrate outward at a constant 
velocity as soon as it is released. 

Also shown in figure 3 is a trajectory of the same sphere in a 4000 CSt silicone oil. 
The viscosity of the oil matches that of the 2 % polyox solution at the shear rate that 
occurs near r = 5 cm for the H and 52 values used. No radial migration is detected in 
two hours of shearing. This proves that the radial migration in the polyox solution is 
an effect of viscoelasticity. 

The effect of the sphere's size on its migration velocity is illustrated in figure 5. For 
d < 630 pm, larger spheres migrate faster as expected. The trend is reversed for 
d > 630 pm. This is believed to be an effect of the hindrance of the plates when d / H  
becomes sufficiently large. 

The results shown in figure 3 are quite different from the observations of Karis et al. 
(19843) and Prieve et al. (1985). We obtained only outward migrations, and the radial 
velocity does not depend on the radial position Y. Prieve et al. (1985) observed inward 
and outward migrations separated by a critical streamline, and the absolute value of 
the radial velocity increased linearly with r inside and outside the critical radius. The 
liquid used here is shear-thinning and that used by Prieve et al. has a nearly constant 
viscosity in the range of shear rate covered. The role of shear-thinning in the 
dependence of u, on r will be further discussed in $4. Choi et al. (1987) suggested that 
the critical shear rate is related to the relaxation time of the fluid such that the critical 
radius would be larger for more dilute solutions. In our device the smallest radius 
observable on the plate is r = 3 cm, inside which the shaft prevents visual observation. 
It is possible that our 2 % is too concentrated for the inward migration to be recorded, 
and so we repeated the tests in figure 3 with 1 Yo polyox solution. 

Because of the reduced viscosity of the 1 % solution, lower angular velocity 52 has 
to be used lest secondary recirculation develops between the plates. On the other hand, 
if 52 is too small, the radial migration becomes very weak and hard to measure. Figure 
6 shows some typical trajectories in 17'0 polyox solution. Still no inward migration is 
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observed. The velocity of migration, if scaled by SZR ( R  is the radius of the upper disk), 
is about one half of that in the 2 %  solution for a sphere of the same size. 

Testing using even more dilute solutions becomes very difficult because even smaller 
52 has to be used. Also, because the particle is slightly heavier than the fluid, it settles 
to a position close to the bottom, where inertia-induced recirculation could also 
produce inward migration. To avoid this ambiguity, we added glycerin to the 0.5% 
solution to make it slightly heavier than the sphere. This way, the particle floats toward 
the upper plate and any inward migration can be attributed to viscoelastic effects. 
Results obtained in this fluid are less repeatable than in the other two solutions. 
Qualitatively speaking, slow inward migration occurs at all radial positions with a 
radial velocity on the order of 5 x lop5 cm s-l. This seems to agree with the arguments 
of Choi et aZ. (1987). We cannot confirm the existence of critical streamlines and the 
discontinuous migration velocity reported by Karis et al. (1984b). 

3.3. Rotation and migration of rod-like particles 
First we use glycerin to study the behaviour of a rod in a Newtonian fluid. Plastic rods 
of diameter d = 170 pm are cut into arbitrary length from a filament. The density of 
the rods matches that of glycerin closely. 

Unless the rod is initially placed very close to one of the plates, it rotates as if along 
a Jeffery orbit (Jeffery 1922). The rotation evolves into a preferred orbit with the rod 
tumbling in the vertical plane, which corresponds to an orbit constant C = GO (Karnis 
et al. 1966). The rod spends most of the period aligned with the local streamlines and 
then flips every half period. No radial migration is observed. The evolution of the orbit 
is evidently a result of inertia and has been extensively studied for linear and quadratic 
shear flows (Karnis et al. 1966). 

It is interesting to compare the measured period of rotation with the theoretical 
result of Jeffery. To do this, we use the empirical correlation of Anczurowski & Mason 
(1968) to convert the aspect ratio of a cylindrical rod r p  into that of an effective 
spheroid r,:  

re = 1.125rOp.'*. 

For a rod of length L = 1.2 mm, the aspect ratio is r p  = 7.06. This gives re = 5.16. 
Given the radial position of the rod, the local shear rate Ij can be calculated. Then the 
Jeffery period calculated from 

is 1.51 s. The measured period is T = 2.37 s, about 57 % larger than the Jeffery period. 
For a longer rod ( L  = 4 mm, r p  = 23.5), the actual period is 84% larger than the 
Jeffery period. This discrepancy is readily explained by the wall effect. Ivanov, van der 
Ven & Mason (1982) noticed in Couette flows that small gap sizes causes slower 
rotation and prolonged period for long particles. This effect is particularly strong if the 
ends of the particle are not smooth, as is the case for our cylindrical rods. In addition, 
if the length of the particle exceeds the gap size, the particle is forced away from its 
preferred orbit and has to rotate while slanted. This is what we observed with the 
longer rod in our experiment. The prominent wall effects in Ivanov et al. (1982) and 
our experiment seem to contradict the numerical results of Ingber & Mondy (1994), 
which showed little increase in the period of a spheroid or a rod when the length of the 
particle exceeds half of the channel width. 

If the neutrally buoyant rod is initially placed adjacent and more or less parallel to 
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FIGURE 7. Preferred modes of motion of a rod in a simple shear flow. (a)  Steady rolling in a plane 
of uniform flow is unstable in a Newtonian fluid unless kept in the plane by external force; (b) a rod 
tumbling in the vertical plane is the preferred orbit in a Newtonian fluid. 

either plate, a completely different behaviour obtains. The rod stays in the horizontal 
plane and turns to a radial orientation, with its length perpendicular to the local 
streamlines. Then it rolls steadily. This happens to rods of all aspect ratios we tested. 
If a non-neutrally buoyant rod is introduced into the torsional flow at any point, it 
drifts toward one of the plates and then also adopts the ‘cross-the-stream’ orientation 
and rolls steadily. 

This behaviour offers insight into the role of inertia in selecting the stable mode of 
motion in viscous fluids. In sedimentation and fluidization, it is well known that a long 
particle puts its long side perpendicular to the flow (Huang, Feng & Joseph 1994). Yet 
in shear flows, the preferred orbit affords maximum alignment with the streamlines. 
The key lies in that a rod of finite thickness lying in the (x,y)-plane is an unstable 
configuration (figure 7 a). Given any three-dimensional disturbance, the rod will 
assume a Jeffery orbit, rotating on a cone surface. Inertia makes the cone fatter and 
eventually the rod tumbles in the (y, z)-plane (figure 76). If the rod is forced, however, 
to stay in a horizontal plane by external agents, such as a solid wall in our case, the 
Jeffery rotation cannot prevail. Since the rod rolls with an angular velocity that equals 
about half of the shear rate (Feng, Hu & Joseph 1994), there will be a relative velocity 
locally between the fluid and the surface of the rod. Then the inertial effect is 
manifested by the familiar stagnation pressure that turns the rod perpendicular to the 
flow (figure 7a). For a neutrally buoyant rod, this configuration is perhaps only 
temporary: inertia gives rise to a repulsion force between the rod and the nearby wall 
(Feng et al. 1994). Thus, the rod will eventually shift away from the plate and again 
fall victim to three-dimensional disturbances. This will not happen, of course, to non- 
neutrally buoyant particles which will be kept close to one of the plates all the time. 

In 2 %  polyox solution, we have found two modes of motion for a rod, depending 
on the local shear rate, the initial configuration and the rod’s aspect ratio. The first 
mode occurs only if the shear rate is low and the rod is initially oriented close to the 
radial direction. Then the rod executes an oscillating motion along a Jeffery orbit 
around the local vorticity vector. Previous experiments in Couette flows (Gauthier et 
al. 197la) suggested that viscoelasticity would drive the rod into a preferred Jeffery 
orbit with its axis completely aligned with the vorticity vector (orbit constant C = 0). 
In our experiment, the rod is initially assigned an orbit close to the preferred one. In 
the time of observation (typically 10 min), the rod seems to maintain the same orbit 
and no evolution is detected. Perhaps, inertia has prevented complete evolution and 
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FIGURE 8. Radial migration of neutrally buoyant rods in polyox solutions. H = 2 mm. (a) The length 
and diameter of the rod are L = 1 mm and d = 330 pm. SZ = 3.9 r.p.m. Aligned motion in 2 %  
solution with radial velocity v, = 1.67 x cm s-'. (b) Same as (a) except for a different initial 
position; v,  = 1.03 x cm s - l .  (c) Same as (a) except that the rod is in oscillating motion. 
SZ = 1.6 r.p.m., v, = -7.71 x cm s-l, C z 0.1. (d) Same as (a) but the rod is longer L = 1.8 mm; 
u, = 2.81 x cm s-l. (e) Same as (b) but in 1 YO polyox solution; v, = 2.82 x cm s-l. 

forced an equilibrium orbit close to C = 0. For a rod of aspect ratio rp  = 5.45, the 
period of the rotation is 4-8 times as large as the theoretical value of the Jeffery orbit. 
The discrepancy seems to be larger at higher shear rates, and is much larger than in 
glycerin. 

If the same rod is initially oriented such that it makes a relatively large angle with 
the local vorticity, or if the shear rate is high enough, the rod immediately aligns itself 
with the local streamline upon start of the flow. Then it will stay aligned and be carried 
along by the flow. This is the second mode of motion, or 'aligned motion'. Rods with 
larger aspect ratios align with the flow more easily. For instance, a thin rod with L = 
1.8 mm and r p  = 10.6 aligns immediately with the flow at the smallest shear rate tested 
in our device (- 1.8 s-l), even if it is carefully oriented in the radial direction before the 
shear starts. 

The same two modes of motion have been observed in 1 %  polyox solution; all 
qualitative features of the motion are the same. The oscillating motion, however, 
persists up to higher shear rates than in the 2 % solution; the oscillation also achieves 
larger amplitude. In addition, the period of rotation is shorter and closer to the 
theoretical value (equation (1)). These differences are consistent with the fact that 
rheologically the 1 YO solution is between a Newtonian fluid and the 2 %  solution. 

To summarize, the oscillating motion prevails only if the shear rate and initial 
orientation fall into a small window. This window is affected by the aspect ratio of the 
rod and the properties of the fluid. Larger aspect ratio and larger normal stresses tend 
to shrink the window, though it is not clear whether it can be completely eliminated. 
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The behaviour of a rod in a torsional flow appears to be qualitatively the same as in 
a Couette flow (Karnis & Mason 1966; Gauthier et al. 1971~).  The perturbation 
analyses of Leal (1975) and Brunn (1980) showed that the second normal stress 
difference causes an orbit drift toward C = 0. When the shear rate is sufficiently large, 
a steady solution emerges with the rod aligned with the flow. The rod selects one of the 
two solutions based on its initial orientation. This picture is entirely consistent with our 
findings. On may also note the interesting contrasts between Newtonian and 
viscoelastic fluids. Inertia leads to either (a)  a tumbling motion that is ‘aligned’ with 
the flow or (b) a steady rolling that is perpendicular to the flow. Normal stresses lead 
to either (c) an aligned motion or (d )  an oscillating motion that is ‘perpendicular’ to 
the flow. ( a )  and (d )  resemble the basic Jeffery motion and can be derived theoretically 
by perturbing the Jeffery orbit (Leal 1980). (b) and (c), on the other hand, are caused 
by another form of the nonlinear effects. 

Radial migration is observed for rods in viscoelastic fluids, being inward if they are 
in the oscillating mode of motion and outward if the aligned mode prevails. In both 
cases, rods migrate at a constant radial velocity c, (figure 8). For outward migration 
(curve a), the non-dimensional radial velocity vJOR is about 8 times larger than that 
for inward migration (curve c). The outward migration is slower for a longer rod (curve 
d). This is somewhat surprising since a rod seems to migrate much faster than a sphere 
of the same diameter (cf. figure 3 and curve a in figure 8). In 1 YO polyox solution, u, is 
about 1/4 of that in the 2 % solution, other conditions being the same (curve e). In both 
modes of motion, the angular velocity with which the rod revolves around the hub 
approaches Q/2, indicating that the rod drifts vertically to the midplane between the 
plates. 

3.4. Behaviour of a suspension of spheres 
Polystyrene spheres are added to 2 YO, 1 YO and 0.5 YO aqueous polyox to form 
suspensions. The diameter of the spheres ranges from 250 to 850pm; we used the 
particles directly out of the bottle and the size distribution is unknown. The solid 
volume fractions used are 2 % ,  5 O/O and 10%. 

Once the flow starts, spheres interact with one another and microstructures form. 
The characteristics of this process are the same for suspensions of various solid 
fractions in different solutions. Figure 9 shows a sequence of snapshots of 2 YO spheres 
in  2 YO aqueous polyox. Black lines in the background are portions of concentric circles 
on the lower plate; the flow direction is from bottom to top in the photographs. 

Shortly after the shear starts, spheres near the outer edge, where the shear is 
strongest, start to form short chains that are aligned to the flow. Such chains appear 
throughout the suspension after 2 min of shearing (figure 9b) .  In this picture, the 
chains are composed mostly of larger spheres. After 8 minutes of shearing (figure 9c), 
the chains have connected to form longer strings. Neighbouring chains apparently 
attract each other and they aggregate to make the string thicker. It may also be noticed 
that smaller spheres start to form their own chains. This size selection in 
particle-particle interaction agrees with previous observations of Giesekus (1 98 1). In 
figure 9(d ) ,  the strings have further grown in length and thickness, and become 
complete circular rings. These rings continue to absorb short chains until only a few 
spheres are left in the clear liquid between adjacent rings (figure 9e). Figure 9 ( f )  gives 
a view of the entire flow field after 20 min of shearing. 

The rings migrate outward; the interior of the flow field will be depleted of all solids 
in a certain time. One might expect spheres of different size to migrate at different 
speed, therefore causing disintegration and regrouping of rings. This does not happen. 
Most rings survive the migration and reach the rim as a whole. Occasionally, a thin ring 
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FIGURE 9. Formation of microstructures in 2 %  suspension of spheres in 2 %  aqueous polyox. 
H = 2.1 mm. (u)  Initial state; (b)  after 2 min of shearing at S2 = 3.5 r.p.m.; (c) after 8 min; 
(d)  after 12 min; (e)  after 18 min; (f) an overview of the rings after 20 min of shearing. 

breaks up as its diameter grows. Then all spheres will be absorbed by the next ring; no 
dispersion of spheres is observed. When rings first appear, they are more or less evenly 
spaced. After the first few rings on the outside have arrived at the rim, the ring spacing 
on the inside grows. After the solid concentration has dropped considerably near the 
hub, thinner rings emerge. They are also closer to one another (cf. figure 9f). The rings 
rotate at roughly half the speed of the upper plate, suggesting that they prefer a vertical 
position midway between the plates. 

The radial migration of rings is measured in one case using 10% solids in 2 %  
aqueous polyox. Figure 10 shows the migration of two rings: (a) is a thick ring that 
appears at an early stage and (6)  is one of the thin rings that appear later. Ring (a)  
starts with a high speed and then settles at a lower speed D, = 8.68 x cm s-'. The 
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FIGURE 10. The outward migration of rings in 10 "16 suspension of spheres in 2 % aqueous polyox. 
H = 2.1 mm, SZ = 3.5 r.p.m. Ring (u) is a thick ring that appears in an early stage and (b) is one of the 
thin rings that appear later; the time has been shifted for comparison. 

FIGURE 11. Rings give way to wider and shorter aggregates after 2 min of stronger shear at 
SZ = 15.7 r.p.m. 

entire trajectory can be seen as two segments of straight lines joined at  t z 1000 s. The 
same pattern holds for ring (6). Though its initial migration is slower, ring (6) later 
attains essentially the same velocity as (a) (cr = 8.40 x lop4 cm s-'). Another intriguing 
feature of the migration is that rings, composed of spheres of various sizes, migrate 
much faster than a single sphere under the same shear (see figure 5) .  

We notice in figure 9 ( f )  that the rings tends to break up as it approaches the outer 
edge. Two possible explanations are (i) the ring is stretched too thinly, (ii) the higher 
shear rate breaks the ring up. The first scenario appears unlikely since most segments 
of the broken ring are still thick, with three or four chains attached abreast. This 
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FIGURE 12. No microstructures appear in 2 % suspension of spheres in a silicone oil. After 25 min 
of shearing at S2 = 3.5 r.p.m., H = 2.1 mm. 

prompted us to investigate the influence of shear rate on the ring structure. After 
20 min of shearing at D = 3.5 r.p.m., $2 is suddenly raised to 15.7 r.p.m. All rings are 
destroyed within a short time, and the segments join abreast to form aggregates that 
are relatively short and wide. Figure 11 shows a snapshot of these aggregates after 
2 minutes of strong shear. After that, the aggregates undergo little morphological 
change. 

Finally, to confirm that the microstructures are formed by viscoelastic stresses, we 
put suspensions of spheres in a silicone oil under the same shear. No signs of 
microstructure are found (figure 12). 

3.5. Behaviour of a suspension of rods 
Plastic rods of diameter d = 170-330 pm and length L = 0 . 5 4  mm are mixed with 1 % 
polyox solutions. The mixture is stirred thoroughly and left still for a few hours to let 
the air bubbles out before being loaded on our parallel-plate device. Two suspensions 
of 2 YO and 5 YO solid volume fractions are studied and the behaviour is similar. Figure 
13 shows a sequence of snapshots of the suspension. 

After the flow starts, most rods align themselves with the flow direction in a few 
seconds. After 7 min of shearing at 52 = 5.75 r.p.m. (figure 13b), some rods seem to 
have formed chains. But this is much less obvious than with the spheres (cf. figure 9b). 
Also unlike suspensions of spheres, the suspension of rods is still more or less 
homogeneous; no large aggregates of particles are found. Then the angular velocity of 
the upper plate is suddenly raised to D = 12.1 r.p.m. At this high shear rate, rod 
chaining, aggregation and outward migration are all accelerated. After 9 min of 
shearing (figure 13c), more chains have formed and the suspension becomes non- 
homogeneous with aggregates of rods and areas of clear liquid. At this point, D is 
increased to 3 1.1 r.p.m. After 30 s of shearing (figure 13 d) ,  band-like structures can be 
discerned. Compared with the rings of figure 9(e), these structures of assembled rods 
are much less conspicuous; many thin chains and single rods fill the space between the 
aggregates. 

We may conclude from figure 13 that rod-like particles align with the flow. They also 
associate with one another to form chains and aggregates. These interactions are much 
weaker than those among spherical particles. 

For comparison, suspension of rods in a silicone oil has also been studied. Aside 
from frequent collision, each rod behaves much like the single rod studied in glycerin. 
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@) (b)  

FICURF 13. The formation of microstructures in 2 %  suspension of rods in 1 YO aqueous polyox. 
H = 2.6 mm. ( a )  Initial state; (b)  after 7 min of shearing at  Q = 5.75 r.p.m.: (c) after 9 min of shearing 
at  Q = 12.1 r.p.m. following (b ) ;  ( d )  after 30 s of shearing of Q = 31.1 r.p.m. following (c).  

FIGURE 14. The behaviour of 2 Yo rod suspension in a silicone oil. N = 2.1 mm. (a) Initial state; 
(b)  after shearing at  SZ = 6 r.p.m. for 21 min. 

They rotate as if along a Jeffery orbit, and the orbit slowly evolves into one in which 
the rod tumbles in the vertical plane. Some of the longer rods have to settle into lower 
orbits because of the restrictions of the solid walls. Because of this orbit evolution, 
a certain degree of alignment with the stream is achieved after long time of shearing 
(figure 14). The air bubbles migrate inward because of centripetal force. 
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4. Discussion 
Two major results of this study are the migration of particles in a torsional flow and 

interaction and aggregation among particles. Obviously, complete interpretations of 
these phenomena are not yet available. In this section, we will try to piece together 
previous knowledge on these subjects and new insights gained in this work to form a 
better understanding of the mechanics. 

Brunn (1976) and Chan & Leal (1977) have studied the motion of a sphere in a shear 
flow using perturbation methods. When applied to a torsional flow, the theory predicts 
an inward migration with radial velocity (Karis et al. 1984a) 

where 
5 a , ,+l la ,  L=--- 

126 7 

is a positive material constant for a second-order fluid model: 
T = ~A,+a,A,+a,,A,*A,, 

where A, and A, are the first- and second-order Rivlin-Ericksen tensor. Equation (2) 
has been verified by measurements of v, in 1 YO w/w polyisobutylene in polybutene 
solution (Karis et af. 1981 a). The perturbation theory apparently breaks down when 
Karis et af. (19843) and Prieve et af. (1985) later used less-concentrated PIB (0.5% 
and 0.1 % w/w) in a more viscous PB solvent. The shear rate is of the same order of 
magnitude in all three experiments. This appears anti-intuitive. The 2 % polyox 
solutions used in this work have an elastic modulus that is more or less the same as that 
of the solution used in Karis et al. (19843) (compare our figure 2 with their figure 4). 
Our results do not agree with equation (2). 

Highgate & Whorlow (1968) proposed a simple hypothesis to explain the radial 
migration in a cone-and-plate device. If the flow is slow, fluid particles experience zero 
resultant force in the radial direction when orbiting along circular streamlines. The 
radial force due to normal stress differences is balanced by a pressure gradient. We 
remind the reader that, because of the curved streamlines, normal stresses do exert a 
radial force on a fluid particle even though the stresses are uniform in a cone-and-plate 
geometry. If a solid particle is introduced into the flow, the local disturbances will 
change both the normal stresses and the pressure. Thus the balance between the two 
is broken and a radial force arises. From intuition, Highgate & Whorlow assumed that 
this force is proportional to the pressure gradient in the undisturbed flow: 

F,K-. dP 
dr ( 3 )  

It is easy to show that dp/dr is proportional to r-l in this flow field. If v, is taken to 
be proportional to F,, (3) leads to a radial velocity that is proportional to Y-', which 
agrees approximately with their data. We will generalize this argument to show that the 
radial velocity measured in Karis et af. (1984a, 3) and Prieve et af. (1985) and that 
measured here are also consistent with the hypothesis ( 3 ) .  

In a cone-and-plate device, the normal stress differences are uniform throughout the 

N ,  = roo - r,, = Y, y2 .  
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A radial force balance gives the pressure distribution (Bird, Armstrong & Hassager 
1987, p. 522, note the different sign convention used therein): 

r 
R p = - ( Yl + 2 Y2) iz h-+p, -7,,, 

where p ,  is the atmospheric pressure and 7,, is an undetermined constant. The pressure 
gradient is therefore proportional to r-'. 

In a parallel-plate geometry, the shear rate is not uniform. This causes complications 
since little can be said of the normal stresses without invoking a constitutive model. By 
using the Criminale-Ericksen-Filbey equation, the pressure can be related to the 
normal stresses by (Bird et al. 1987, p. 526) 

where 7,, has been put to zero. Yl and Y2 are functions of the local shear rate defined 
by (see figure 1 for the geometry): 

N ,  = 7HH-7,, = Y, (v)  v2, 
N ,  = T,, - 7,, = Y2 (i) y'. 

For many viscoelastic systems, the normal stress differences can be described by power 
laws in certain ranges of the shear rate (Bird et al. 1987). Now if we assume 

it follows that 
!PI + Y2 = Ky-", 

If the fluid behaves like a second-order fluid, Yl and Y, do not depend on y : n  = 0. 
Then 

d p -  KO2 
- - -__ 
dr €P r. 

Applying the Highgate-Whorlow hypothesis ( 3 )  thus leads to 

Q2r 
v, IEZ' 

which agrees with equation (2) perfectly. We note that (6) also applies to later 
measurements of Karis et al. (1984b) and Prieve et al. (1985); the polymer solutions 
used do have a roughly constant Yl in 10 < i, < 40 s-'. 

If the fluid is shear-thinning such that n = 1, one gets 

which implies that the radial velocity u, is independent of r .  This is consistent with our 
measurements (cf. figure 3 ) .  Measurements of the first normal stress difference for 2 '3'0 
aqueous polyox shows a power-law region in 1 < i, < 100 s-l with n = 0.98. Bird et al. 
(1987) presented data for some other polymer solutions; both !PI and Y2 seem to have 
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a power index n M 1.4 for intermediate ranges of y of two to three decades. 
Incidentally, a sphere in a liquid with n = 2 in a parallel-plate geometry will migrate 
with v, cc Y-' according to equation ( 5 ) ;  this is similar to a sphere in a cone-and-plate 
device filled with any viscoelastic liquid. We emphasize that the above arguments do 
not indicate the direction of migration. 

Choi et al. (1987) offered an interesting explanation for the critical streamline 
discovered by Karis et al. (1984b). The time scale t of the disturbance of the sphere is 
associated with the local shear rate. When the sphere is within the critical streamline, 
t is larger than the relaxation time of the polymer molecules, which thus behave as 
flexible molecules. On the other hand, rigid molecules are felt by a sphere that is outside 
the critical streamline; the sphere thus behaves differently. This argument seems to go 
along with the two-way migration of rods discovered in our experiment. A rod that is 
aligned with the flow perturbs the flow on a time scale y- l ,  where i. is the local shear 
rate. A rod that is oscillating around the local vorticity axis perturbs the flow on a time 
scale of period T. Under our experimental conditions T + y-'. This could explain why 
the aligned rod migrates outward whereas the oscillating one goes inward. We do not 
know of a continuum model that accommodates the transition in molecular reaction 
surmised by Choi et al. (1987). It appears similar to a change of type (Joseph 1990). 
A Deborah number and a Reynolds number may be defined by De = .jh and Re = 
pyd2/v,  where h and 7 are the relaxation time and viscosity of the fluid. Then a Mach 
number can be constructed : 

where c is the shear-wave speed. If a change of type occurs at the critical streamline 
( M  = l), the critical shear rate y ,  will satisfy 

~c(p)"  = const. 

In reality, Choi et al. (1987) discovered a different relationship: yc h = const. Hence, the 
proposed molecular transition does not fit into the framework of a change of type. 

A robust feature of sheared suspensions in viscoelastic liquids is the chain structure 
aligned with the flow. Petit & Noetinger (1988) offered an explanation in terms of the 
secondary flow induced by the spheres' rotation. Since a rotating sphere in a 
viscoelastic fluid sucks in fluid around its equator and ejects fluid from its two poles, 
two spheres whose line of centres is parallel to the streamlines in a shear flow will 
attract each other. More spheres join in to form a chain. This theory is unlikely to be 
true for three reasons. First, it has been observed that once the spheres form a chain, 
they stop rotating (Michele et al. 1977). Hence rotation-induced suction cannot be the 
agent to hold the chain together. Secondly, the secondary flow implies repulsion 
between spheres rotating side by side. This cannot explain the rings made of several 
chains bundled together and the aggregates (figure 9). Finally, rod-like particles do not 
rotate but they do form chains and aggregates. 

We believe that the mechanisms for particle-particle interaction and association are 
the same ones that operate in the sedimentation and fluidization of many particles in 
a viscoelastic liquid. Since all interactions happen on the plane of uniform velocity 
(cf. figure 7), the effect of shear is minimal. The two basic mechanisms found in 
sedimentation are: (i) attraction force between particles falling side by side (Joseph et 
al. 1994) or one on top of the other (Riddle, Narvaez & Bird 1977); (ii) preferred 
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orientation of a long particle in sedimentation with its long axis parallel to the direction 
of fall (Leal 1975; Liu & Joseph 1993). 

Numerical simulations have revealed the anatomy of these mechanisms (Feng et al. 
1995; Feng, Huang & Joseph 1996). Viscoelastic normal stresses cause a dramatic 
change in the pressure distribution near the particle. This new pressure field yields forces 
and torque that are opposite to those expected in a Newtonian fluid; the direct 
contribution of the normal stresses to the forces is relatively small. To be complete, we 
should mention that when the separation between two spheres falling one on top of the 
other exceeds a threshold value (5  6 1  Od) ,  a weak repulsion exists between them 
(Riddle et al. 1977; Feng et al. 1996). This should not affect the picture of particle 
aggregation in an important way. 

Thus, if a suspension in viscoelastic liquids is sheared, particles attract each other in 
longitudinal and lateral directions. Primitive arrays made of spheres joined abreast will 
rotate until they too are aligned with the flow. Parallel chains attract each other and 
form thicker aggregates. Inhomogeneity develops just like in sedimentation (Joseph et 
al. 1994; Allen & Uhlherr 1989). Since thin rods aligned with the stream cause little 
disturbance to the ambient flow, the range of the lateral attraction force is much 
shorter for rods. Hence. fibre-like particles aggregate much more slowly (figure 13). 

The above arguments address the effects of normal stresses alone. In reality, inertia 
will also be present and compete with normal stresses, in shear flow and sedimentation 
alike. Unlike normal stresses, inertia works differently in sedimentation and shear 
flows; this has been explained in $3.3. Thus, in a shear flow the competition may manifest 
itself as an orbit constant between 0 and m. This seems to be what we found in 93.3. 
Upon closer inspection, the data of Karnis & Mason (1966), Gauthier et al. (1971 a, 
6) and Bartram et al. (1975) all show C decreasing for a rod in a viscoelastic fluid, but 
C = 0 is never observed. In sedimentation, the inertia-elasticity competition may 
assume a more dramatic form. The preferred orientation of a settling rod sees a rather 
abrupt change when its falling speed exceeds the shear wave speed in the liquid (Liu 
& Joseph 1993). The counterpart of this tilt transition in shear flows is a sudden change 
in the behaviour of a rod. It is aligned with the flow in the subcritical regime and will 
adopt a tumbling motion when a certain characteristic velocity exceeds the shear-wave 
speed. We tried to accentuate the inertial effects by increasing L? (see tj3.5). Rod 
aggregation and migration intensify, but no signs of a transition to tumbling motions 
were found (see figure 13). The shear-wave speed for 1 % polyox solution is about 
20cm s-'. The maximum velocity on the edge of the upper plate is 35cms-l. The 
characteristic velocity for the flow around a particle, however, should be the slip 
velocity which tends to be very small. Then extremely large D is needed before a change 
of type happens. This was not further explored in our experiments. 

A different situation arises when small-amplitude oscillatory shear is applied. Petit 
& Noetinger (1988) were able to generate chain structures of spheres that are 
perpendicular to the flow direction in a silicone oil. This resembles the stable across- 
the-stream arrays of larger spheres observed in water-fluidized beds (Fortes, Joseph & 
Lundgren 1987). A change of type may be achieved in a viscoelastic fluid using 
oscillatory shear. When the frequency f exceeds a certain value, the characteristic 
velocity, say ,fd, exceeds the shear wave speed of the fluid. Then chains of spheres 
aligned with the flow at lower frequency may break up and form chains that go across 
the streamlines. A similar transition can be expected for the orientation of rods. 
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5. Conclusions 
The results reported in this paper may be summarized as follows: 
(i) In a torsional flow of viscoelastic liquids, spherical and rod-like particles migrate 

radially under the action of normal stresses. The direction of migration depends on the 
properties of the fluid and the motion of the particle. The velocity of migration does 
not depend strongly on the radial position. These results, along with data in the 
literature, are consistent with a hypothesis proposed by Highgate & Whorlow (1968) 
on the driving force of the migration. 

(ii) The rotation of a rod-like particle in a torsional flow is essentially the same as 
in a simple shear flow. This is true in both Newtonian and viscoelastic liquids. 

(iii) Suspensions of spheres and rods in viscoelastic liquid exhibit microstructures 
under shear. Chains of particles align with the flow direction and aggregates of 
particles form at higher shear rate. Microstructures and inhomogeneity develop more 
readily for spheres than for rod-like particles. 

(iv) The mechanisms for particle interaction and aggregation in shear flows are 
believed to be the same ones found in sedimentation : attraction forces among particles 
and preferred orientation of long particles. 

(v) A change of type has not been observed in steady shear flow of viscoelastic 
liquids, perhaps because the rotation is too slow. A different kind of change of type 
may happen when small-amplitude oscillatory shear is applied. 
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